


� We propose a synchronous scheme for passive-proactive
lane changing.

� According to the requirements of the lane change
problem, we build a game theoretic deep Q-learning
algorithm to help autonomous vehicles successfully
complete lane change tasks.

II. RELATED WORK

Traditionally, reinforcement learning (RL) has exclusively
considered the optimization of single-agent policies in static
environments. Unfortunately, the lane change task on road-
ways, along with many other tasks in this environment,
is a multi-agent participation process. One challenge that
arises as a result of this multi-agent RL (MARL) problem is
that the environment will become non-stationary, rendering
algorithms seeking stationary solutions vulnerable to thrash-
ing. This is due to the fact that one agent's policy update
will be considered as the non-stationary disturbance of the
environment by other agents. To remedy this, one intuitive
solution is to enforce that the current agent only consider
the other agents as part of the environment and use the
single-agent RL method directly. For example, Tan et al. [6]
analyzed the performance of collaboration vs. independent
action in a mixed-agent scenario. Matignon et al. [7] showed
that in the uncoordinated case, independent learning results
in non-stationary and shadowed equilibria. However, these
approaches generally result in the current agent not leverag-
ing all prior information when in cooperative or competitive
scenarios.

A signi�cant amount of effort has been devoted to deter-
mining how best to optimize the value function approxima-
tion and how to overcome local minima or sluggish conver-
gence on the dynamic programming side of the problem. To
address this, Littman et al. [8], [9] proposed that Markov
games could be leveraged to address the MARL problem.
This minimax-Q algorithm focuses on the zero-sum game
of the agents such that agents policies will converge to a
�xed,“safe” strategy.

Separately from MARL, recent advances in DRL have
shown incredible utility on a variety of challenging RL
problems. DRL is an extension to classical reinforcement
learning where the policy, value function and/or underlying
model are replaced with a deep neural network. This method
has been applied to many different problems, including opti-
mizing dialogue management [10], governing a quadrupedal
trot gait [11], and designing a controller for helicopter with
inverted �ight [12]. At the core of these methods is deep
learning (DL) [13], i.e. the use of deep neural networks
as data-driven high dimensional function approximations,
which have provided a computational method to represent
functions with a controllable complexity. Introducing DL
into reinforcement learning has generally provided greater
�exibility for the decision-making process and improved
computational ef�ciency through the leveraging of graphical
processing units (GPUs). For example, Mnih et al.[14] show
that deep Q-learning can be applied play Atari 2600 games

based only on the raw pixel data as input with amazing
performance.

Especially recent work has shown incredible promise in
the proliferation of these methods to achieve control prob-
lems. For example, [15] mapped raw RGB-D observations
directly to torques in order to assist the learning of control
inputs for manipulation. Others have also extended the utility
of DRL by both improvements on the optimization process
[16] and designing neural network architectures [17]. As part
of the former effort, Bahdanau et al. [18] proposed an actor-
critic algorithm to generate sequences in natural language
processing (NLP) problems. So-called Deep Q-Networks
(DQNs), named for their replacement of the Q function in
RL with a deep neural network, have even reached human-
level performance on some video games [19]. Recently this
has been extended to other problems via the AlphaGo [20]
and AlphaGo Zero [21] frameworks.

Very recently, Tampuu et al. [22] considered the two-
player pong game using DQN for learning collaborative
playing strategies. Building on these successes, Jakob et
al. built a general decentralized multi-agent actor-critic al-
gorithm calledcounterfactual multi-agent(COMA), which
considered a centralized critic function [23] to approximate
the Q-function and subsequently optimize agent policies.
COMA demonstrated impressive improvement of average
performance when tested inStarCraft unit micromanage-
ment. Meanwhile, Lowe et al. [24] proposed a general-
purpose multi-agent learning algorithm by considering the
one-to-one critic functions for each agent under the mixed
cooperative-competitive environment. Their work only used
local information to handle cooperative, competitive, or
mixed interaction behaviors of agents without assuming a
differentiable model. Other recent works [25], [26], [27],
[28] also considered these cooperative-agent problems in the
context of RL.

III. M ETHODOLOGY

In this section, we brie�y review some background knowl-
edge on the method that we will use.

A. Single-agent RL

In the standard single-agent RL setting, one agent interacts
with the environment over discrete times. At timet, the
agent observes the statest 2 S and executes the action
at 2 A based on certain policy� : S ! P D(A) where
P D(�) represents the probability distribution over a certain
space. The environment then transits to the next statest +1 �
P(�jst ; at ) through transition functionP : S� A ! P D(S),
and the agent attains a rewardr t : S � A ! R. Given an
initial states at timet, we aim to �nd a policy� to maximize
the expected total rewardsE[

P T � t
k=0 
 k r t + k jst = s] with a

discount factor
 2 (0; 1). There are two general approaches
to solving a RL problem: policy optimization and dynamic
programming.

1) Policy Optimization: This approach tries to
�nd the optimal policy through direct searching or
solving the corresponding optimization problem. For



instance, policy gradient method considers a class of
polices � � = � (ajs; � ) that are parameterized by� .
Denoted the total discounted reward under the policy
with parameter � by J (� ) = E � � p( � ;� ) [

P
t � 0 
 t r t ],

where p(� ; � ) is the distribution over the trajectory
� := ( s0; a0; r0; s1; a1; r 1; � � � ). We can update and �nd the
optimal � (i.e., the optimal policy) by the gradient method;
see, e.g., [29], [30], [15]. In particular, the REINFORCE
algorithm[29] uses the sample of trajectory directly to
update � . To address the high variance brought by the
direct use of the gradientr � J (� ), Vanilla REINFORCE
introduces unbiased baselineb(st ) such that r � J (� ) =
E �

hP T
t =0

� P T
t 0= t 
 t 0� t r t 0 � b(st )

�
r � log � � (at jst )

i
has

low variance [30].
2) Dynamic Programming: We will use one of the

dynamic programming approaches – Q-learning method
(Watkins, 1989) and its variants in this paper. To maximize
the state-value functionV� (s) = E[

P T � t
k=0 
 k r t + k jst = s; � ]

with the initial states at time t, we de�ne action-state
value functionQ� (s; a) = E[

P T � t
k=0 
 k r t + k jst = s; at =

a; � ]. Then for any(s; a) 2 S � A, a policy � � maximiz-
ing Q� (s; a) also maximizesV� . Furthermore, the optimal
Q� � (st ; at ) satis�es the followingBellman equation:

Q� � (st ; at ) = r t + 
 Ea t +1 � � � ;s t +1 Q� � (st +1 ; at +1 ); (1)

which can be solved iteratively with certain deterministic
function � : S ! A according to

Qt +1 (st ; at ) = (1 � � t )Qt (st ; at )

+ � t [r t + 
Q t (st +1 ; � (st +1 ))] (2)

under certain condition [5].
Mnih et al. recently developed deep Q-learning [14], [19]

that integrates neural networks with Q-learning method. They
introduced the approximationQ� � (s; a) � Q(s; a; � ) includ-
ing additional replay buffer and target neural network. At
training iterationi with current statest , the objective is min-
imizing the loss functionL i (� i ) = Est [(yi � Q(st ; at ; � i ))2]
with yi = Est +1 [r t + 
 maxa Q(st +1 ; a; � i � 1)], and the
stochastic gradient descent is used to update neural network
weights� i where the gradient is given by

r � i L i (� i ) = E[
�

r t + 
 max
a

Q(st +1 ; a; � i � 1) � Q(st ; at ; � i )
�

r � i Q(st ; at ; � i )]: (3)

B. Markov Game

A Markov game [8], also called stochastic game, is
de�ned as fN ; S;(Ak )k2N ; P; (r k )k2N ; (� k )k2N g where
N = f 1; � � � ; ng is the set of agents,S the set of states,
Ak the set of actions available for agentk, P : S �
A1 � � � � � An ! P D(S) the state transition function,
r k : S � A1 � � � � � An ! R the agentk's reward function,
and � k : S ! P D(Ak ) the agentk's policy. Each agentk
aims to maximize its expected discounted total rewards with
the starting states at time t,

V� k (s) = E

"
T � tX

i =0


 i r k
t + i jst = s; (� k )k2N

#

: (4)

In this paper, we will use a two-agent Markov game to model
the lane change problem, solve the resulting game based on
the deep Q-learning method.

IV. L ANE CHANGE PROBLEM

The lane change problem has received lots of research;
see, e.g., [31] that investigates how to adjust the actions in an
aggressive lane-change situation to improve the traf�c �ow,
[32] that introduces an integrated model to jointly consider
the mandatory and discretionary lane-change behaviors, and
[33] that proposes a data-driven model to simulate the lane
change process. In this paper, we will study the collaborative
lane change in a system of autonomous vehicles. We assume
that each vehicle can observe the states of other vehicles with
bounded errors, but no vehicle is at a position to (globally)
coordinate the lane change process. Instead, the vehicles will
cooperatively carry out the lane change through playing an
equivalent Markov game.

As shown in Fig.1, we consider a simpli�ed while realistic
lane change setting, wherecar0 sends the signal to change
its lane into lane-3,car2 responds to this signal to create the
merging space, and other neighboring vehicles are assumed
to be not responsive (NR) to the signal. The lane change
process includes an adjustment stage and a merging stage.
During the adjustment stage,car0 will keep adjusting its
position and speed waiting for the merging moment, while
car2 is adjusting its position and speed to create the merging
space. When the adjustment is �nished,car0 will take the
merging action to complete the lane change process.

The above lane change setting results in a proactive-
passive system with one proactive agent (car0), one passive
agent (car2), and one reference agent (car1); see TableI.
We empower the vehicles with RL to guide their actions,
for instance, when the proactive agent switches from the
adjustment stage to the merging stage.

Characters Purpose Examples
Reference agent NR car1
Proactive agent Learn to take actions to merge car0
Passive agent Learn to create merging space car2

Others NR car3, car4, car5

TABLE I: Vehicle roles

Speci�cally, the set of agentsN = f 1; 2g corresponding
to the proactive and passive agents/vehicles. The state at
time t is denoted byst = ( sk

t )k2N , with sk
t = ( xk

t ; yk
t ; vk

t )
where (xk

t ; yk
t ) denotes the 2D position/coordinate and

vk
t the linear velocity of agentk. At time t, vehicle

k's action is denoted byak
t

:= ( s; u), where s 2
f 1 (acceleration); 0 (keep); � 1 (deceleration)g and u 2
f 1 (veer � lef t ); 0 (keep); � 1 (veer � right )g. The basic
actions include acceleration(1; 0), deceleration(� 1; 0), keep
(0; 0), veer-left (0; 1), and veer-right(0; � 1). We assume
that merging action is either veer-left or veer-right. Since we
focus on the proper stage-switching moment, the vehicle will
keep on its lane before that and the basic operations include
speed up and slow down. When the merging con�guration
is reached, the proactive vehicle takes the merging action.



As for the state dynamics of the vehicle, we use thedouble
integrator model:
�

yk
t +1

vk
t +1

�
=

�
1 1
0 1

� �
yk

t
vk

t

�
+

�
0
1

�
uk (ak

t )� t + " t ; (5)

whereuk (ak
t ) speci�es the input magnitude upon actionak

t
and " t is the disturbance. The transition function isst +1 �
P(�jst ; (a1; a2)) follows from the above dynamics.

The reward function is built by considering the possible
risks and state changes, as follows:

r k
t (st ; (a1

t ; a2
t )) =

8
>>><

>>>:

dist (yk
t ); otherwise;

2; if jdist (yk
t )j < �; � > 0;

20; if success;
� 10; if collision;

where, based on the lane change setting in Fig.1,
dist (y1

t ) = � c1 minf y1
t � ycar 2

t
; 0g� c2 maxf y1

t � ycar 1
t ; 0g�

c3 maxf y1
t � ycar 3

t
; 0g and dist (y2

t ) = � c4 maxf y2
t �

ycar 1
t ; 0g � c5 maxf y2

t � ycar 5
t

; 0g, with yk
t = yk

t �
dsafe ; yk

t
= yk

t + dsafe . Here, dsafe is the safe distance
between vehicles,cj are weights to trade off among risks,
and� > 0 is a certain threshold to mark the expected zone or
not. The proactive and passive agents/vehicles will learn the
optimal policy � k (�js) that maximizes the total discounted
reward to guide the lane change. Notice that the reward of
each agent depends on the state (and thus action) of the
other agent, which effectively leads to a strategic interaction
among the agents and allows to study the cooperative lane
change using the Markov game framework.

V. L ANE CHANGE SCHEMES

In the section, we consider two lane change schemes based
on RL. In the �rst one (called asynchronous scheme), each
vehicle treats the other vehicle as part of the environment
and carries out RL as in the standard single-agent RL
setting. Such a scheme often leads to vehicle collision, which
motivates us to consider another scheme (called synchronous
scheme) where vehicles carry out RL to solve for the
resulting Markov game. This scheme takes into consideration
the strategic behavior (being reward maximizer) of other
vehicles, and leads to safe lane change.

A. Asynchronous scheme

Each vehicle considers all other vehicles as part of the
environment, and carries out (single-agent) Deep Q-learning
as in Algorithm 1. As each vehicle's action does not take
into account the strategic behavior of the other vehicle, the
asynchronous scheme may lead to vehicle collision. This is
con�rmed by the experiments; see Section VI.

B. Synchronous scheme

Motivated by [9][8], we use Markov game to model and
guide the lane process.

De�nition 1: A two-agent Markov game is de�ned as
G := fN ; S;(Ak )k2N ; P; (r k )k2N ; (� k )k2N g, whereN =
f 1; 2g, S and(Ak )k2N are the state space and action spaces,

Algorithm 1 Deep Q-learning algorithm [14]

1: Initialization of Q(s; a; � ) and the replay bufferD.
2: for episode1 : M do
3: Randomly choose a starting states0.
4: for t = 1 ; � � � ; T do
5: Choose actionat = arg maxa Q(st ; a; � ) with

probability 1 � � . Otherwise, make a random choice.
6: Take action at in simulator and add

(st ; at ; r t ; st +1 ) to the replay buffer.
7: Take a sample(s; a; r; s0) from D.
8: Update neural network by�  � � � r � L(� )

where y = r + 
 maxa0 Q(s0; a0; � ) or y = r if the
process is terminated.

9: end for
10: end for

� k = f � k
t gt =1 ;��� T is the strategy of agentk., r k (s; (a1; a2))

is the reward function of agentk andP(�js; (a1; a2)) is the
transition function.

At time t, agentk obseves statest , takes actionak
t �

� k
t (�jst ) according to its strategy� k consisting of the policies

� k
t , and receives the rewardr k

t (st ; (a1
t ; a2

t )) , while the state
st +1 � P(�jst ; (a1

t ; a2
t )) . In Markov game, the agents will

adjust their strategies to reach an Nash equilibrium.
De�nition 2: A Nash equilibrium of two-agent Markov

gameG is a pair of strategy(� 1�
; � 1�

) such that8s 2 S,

V 1(sj� 1�
; � 2�

) � V 1(sj� 1; � 2�
); 8� 1; (6)

V 2(sj� 1�
; � 2�

) � V 2(sj� 1�
; � 2); 8� 2; (7)

whereV k is the state value function de�ned by equation (4).
We see that at a Nash equilibrium each agent's strategy is

the best response to the other's strategy. We consider only
stationary strategies, and the existence of Nash equilibrium
is ensured by the following theorem.

Theorem 3:(Filar and Vrieze [34], Theorem 4.6.4) A
Markov game with stationary strategy has at least one Nash
equilibrium.

Further, consider the optimal action-state function

Qk �

� (st ; (a1
t ; a2

t )) = r k
t (st ; (a1

t ; a2
t ))+


 Ea1
t +1 � � 1 � ;a 2

t +1 � � 2 � ;s t +1
Qk

� � (st +1 ; (a1
t +1 ; a2

t +1 )) : (8)

The agent k will take action based on� k (st ) and
Qk

� (st ; (a1
t ; a2

t )) at each timet, which leads to a bimatrix
game.

De�nition 4: A bimatrix game is de�ned as
fN ; (M k )k2N ; (� k )k2N g, where the set of agents
N = f 1; 2g, payoff (M k )k2N are jA1j � j A2j matrices
with the (i; j )-th entry M k (i; j ) = Qk

� k (st ; (a1
i ; a2

j )) , and
� k is the strategy of agentk. The mixed strategy Nash
equilibrium of this bimatrix game is a pair of probabilities
(� 1�

; � 2�
) satisfying

� 1�
M 1� 2�

� � 1M 1� 2�
; 8� 1 2 P D(A1); (9)

� 1�
M 2� 2�

� � 1�
M 2� 2; 8� 2 2 P D(A2): (10)



By modeling each decision making step as a bimatrix
game, the whole Markov game consists of a sequence
of bimatrix games. Theorem 3 of [9] ensures that the
Nash equilibrium (� 1(st ); � 2(st )) of the bimatrix game
(Q1(st ); Q2(st )) is also part of the Nash equilbrium of the
whole Markov game. If� k �

= f � k �
(�s` )g` =1 ;��� ;jSj is the

Nash equilibrium of the Markov gameG, then there exists
one (� 1�

(�s0); � 2�
(�s0)) that is also the Nash equilibrium of

the bimatrix game(Q1(st ); Q2(st )) with st = �s0. The state
function valueV k (sj� 1�

; � 2�
) = � 1�

(s)Qk �
(s)� 2(s) with

the starting states, and the action-state function value (8) is
given by

Qk �

� (st ; (a1
t ; a2

t )) = r k
t (st ; (a1

t ; a2
t ))+


 Est +1 [V k (st +1 j� 1�
; � 2�

)]: (11)

After taking actionak
t � � k (st ), the updated payoff matrix

will be the Nash equilibrium(� 1(st +1 ); � 2(st +1 )) of the
bimatrix game(Q1

t (st +1 ); Q2
t (st +1 )) instead of independent

update [9],

Qk
t +1 (st ;(a1; a2)) = (1 � � t )Qk

t (st ; (a1; a2))

+ � t [r 1
t +1 + 
� 1(st +1 )Qk

t (st +1 )� 2(st +1 )]: (12)

Notice that the Q-values with different state-action pairs
are dif�cult to calculate directly. Instead, we can use neural
network as the estimator of the Q-table:Qk (s) � Qk (s; � k ).
This leads to the Algorithm2.

Algorithm 2 Deep bimatrix Q-learning for vehiclek

1: Build neural networksQk (�; � k ) with output sizejA1j �
jA2j and replay bufferD.

2: Build the initial QN =k (�; � ) for the other vehicle.
3: for episode1 : M do
4: Vehicle k chooses a starting statesk

0 randomly.
5: for t = 1 ; � � � ; T do
6: Calculates(� 1(st ); � 2(st )) .
7: Two vehicles reach(� 1(st ); � 2(st )) consensus.
8: Chooses action by� k (st ) with probability 1 � � .

Otherwise, vehiclek chooses action randomly.
9: Take actions in the simulator and add

(st ; (a1
t ; a2

t ); r k
t ; st +1 ) into replay bufferD.

10: while One minibatch sample fromD do
11: For each(s; (a1; a2); r k ; s0) in the minibatch,

calculate targetyk as follows

yk =

(
r k + 
� 1(s0)Qk

t (s0; � k )� 2(s0); not terminated;
r k ; terminated:

12: Use stochastic gradient descent to update� k

with the cost function(yk � Qk (s; (a1; a2); � k ))2.
13: UpdateQN =k

t (s; � ).
14: end while
15: end for
16: end for

Here (� 1(st ); � 2(st )) is the mixture Nash equilibrium of
bimatrix game(Qk (st ; � k ); QN =k (st ; � )) . We apply Lemke-
Howson algorithm to caculate the mixture Nash equilibrium

of the bimatrix game.Qk (st ; � k ) is the vehiclek's Q-values
and QN =k (st ; � ) is the estimate of the other vehicle's Q-
values.QN =k (st ; � ) can be build by neural network and the
data (e.g.,r N =k

t or st or QN =k (st ; � N =k )) sent by the other
vehicleN =k. Based on the received data,� can be updated
using the gradient method or replaced by the received value
of QN =k (st ; � N =k ) value. In our experiments, we use the
receivedQN =k (st ; � N =k ) from the other vehicle.

C. Convergence of Algorithm2

Based on [9], the following theorem ensures the conver-
gence of the algorithm2.

Theorem 5:(Theorem 4 in [9]) Given a Markov game
G := fN ; S;(Ak )k2N ; P; (r k )k2N ; (� k )k2N g as in De�ni-
tion 1. If we take the iterative update (12) through Algorithm
2, it will converge to the Nash equilibrium(� 1�

; � 2�
) of G.

Proof: By the Conditional Averaging Lemma in [35],
Qk

t +1 (st ; (a1
t ; a2

t )) = (1 � � t )Qk
t (st ; (a1

t ; a2
t )) + � t [r k

t +

� 1(st +1 )Qk

t (st +1 )� 2(st +1 )] will converge to

�T k Qk (st ; (a1
t ; a2

t ))

= Est +1 [r k
t + 
� 1(st +1 )Qk

t (st +1 )� 2(st +1 )] (13)

=
X

st +1

P(st +1 jst ; (a1
t ; a2

t ))[ r k
t + 
� 1(st +1 )Qk

t (st +1 )� 2(st +1 )]

=
X

st +1

P(st +1 jst ; (a1
t ; a2

t ))T k Qk (st );

where T k Qk (st ) = r k
t + 
� 1(st +1 )Qk

t (st +1 )� 2(st +1 ). By
Theorem9 in the Appendix,T k is a contraction mapping,
and so is �T k . So the update (12) will converge to a �xed
point of �T k .

VI. EXPERIMENTS AND EVALUATIONS

A. Testbed

In order to test this method we use a physics engine-based
[36] high-�delity model of a four wheel drive,18

th
scale

vehicle. The dynamics of the system are given as:

x 0(t) = � (x (t); F (t); u (t); p); (14)

in which � (�) is the dynamical model,x (t) 2 Rn is the
state of the system,x 0(t) is the derivative of the state,F (t)
consolidates external forces and collisions applied to the
system from e.g. the road surface,u (t) 2 Rm is a control
input vector including steering and acceleration signals, and
p 2 Rw is model parameter vector to be calibrated. In order
to simulate simulated the behavior of a physical system,
we calibrate model parametersp to the physical platform
by using an online calibration algorithm [37]. By achieving
low uncertainty on model parameters, it is observed that the
simulated vehicle can exhibit virtually identical behavior as
the actual vehicle.

By providing the actions based on learned policies� k (st )
for multiple simulated vehicles and stepping the simulator
forward, state updates can be obtained and update the ob-
servationst +1 , which then propagate Q-value updates from
Eq. (12) leading to direct policy updates via Algorithm2.





different training episodes are provided (V-B schemelink and
V-A schemelink). These results suggest that the synchronous
cooperative scheme has potential to assist autonomous ve-
hicles in �nishing maneuvers strategically after suf�cient
training.

VII. CONCLUSIONS

In our paper, we have introduced the proactive-passive
pair of vehicles with one reference vehicle as the lane
change structure. Because the non-coordination scheme for
lane change task does not give the expected performance,
we propose a scheme considering Deep Q-learning and
the Markov game together. The resulting performance on
the physics engine based high �delity model shows that
the proposed scheme allows the vehicles reach the proper
merging con�guration starting from different states. This
scheme could be used to build the model-free controller to
help autonomous vehicles �nish tasks after training. In the
future, we are going to consider how to improve the training
process so that it can avoid obvious dangerous behaviors.

APPENDIX

To prove Theorem5, we have the following assumptions
and result.

Assumption 6:The learning rates� t satisfy
P

t � t =
1 ;

P
t � 2

t < 1 .
Assumption 7:(Assumption 1 in [9]) Given a bimatrix

game (Q1(s); Q2(s)) , its mixture Nash equilibrium is a
pair of probabilities(� 1�

; � 2�
) satis�es one of the following

properties:
1) Property1: The equilibrium is social optimal:

� 1�
Qk � 2�

� � 1Qk � 2; 8� 1 2 P D(A1); � 2 2 P D(A2):

2) Property2: The equilibrium is not social optimal:

� 1�
Q1� 2�

� � 1�
Q1� 2; 8� 2 2 P D(A2);

� 1�
Q2� 2�

� � 1Q2� 2; 8� 1 2 P D(A1):

Assumption 8:(Assumption 2 in [38]) For all bimatrix
game(Q1

t (s); Q2
t (s)) in the Markov gameG at timet, they

should all satisfy Property 1 in Assumption7 or all satisfy
Property 2 in Assumption7.

With these assumptions, we can prove that the Q value
update operation is a contraction mapping,

Theorem 9:(Lemma 3 in [9]) De�ne a mappingT k such
thatT k Qk (s) = r + 
� 1(s)Qk (s)� 2(s) where(� 1(s); � 2(s))
is the Nash equilibrium of the bimatrix game(Q1(s); Q2(s)) .
ThenT k is a contraction mapping.

Proof: Without loss of generality, consider two bi-
matrix games(Q1(s); Q2(s)) and (Q10

(s); Q20
(s)) with

T k Qk (s) � T k Qk 0
(s), and denote the correspond-

ing mixture Nash equilibriums by(� 1(s); � 2(s)) and
(� 10

(s); � 20
(s)) respectively. For agentk,

T k Qk (s) � T k Qk 0
(s)

=( r + 
� 1(s)Qk (s)� 2(s)) � (r + 
� 10
(s)Qk 0

(s)� 20
(s))

= 
 (� 1(s)Qk (s)� 2(s) � � 10
(s)Qk 0

(s)� 20
(s))

By Assumption8, we have two cases:

1) If (� 1(s); � 2(s)) and (� 10
(s); � 20

(s)) are social opti-
mal: we have� 10

(s)Qk 0
(s)� 20

(s) � � 1(s)Qk 0
(s)� 2(s), so

that

T k Qk (s) � T k Qk 0
(s)

� 
 (� 1(s)Qk (s)� 2(s) � � 1(s)Qk 0
(s)� 2(s))

� 
 k� 1(s)kkQk 0
(s) � Qk 0

(s)kk� 2(s)k

Notice that 
 2 (0; 1) and k� 10
(s)k 2 [0; 1]; k� 20

(s)k 2
[0; 1]. So T k is a contraction mapping.

2) If (� 1(s); � 2(s)) and (� 10
(s); � 20

(s)) are not social
optimal: We consider different agents separately:

� For agent-1. As(� 10
(s); � 20

(s)) is a Nash equilibrium,
we have � 10

(s)Q10
(s)� 20

(s) � � 1(s)Q10
(s)� 20

(s).
Thus,

T1Q1(s) � T1Q10
(s)

� 
 (� 1(s)Q1(s)� 2(s) � � 1(s)Q10
(s)� 20

(s)) :

Since(� 1(s); � 2(s)) is not social optimal, agent-1 will
receive higher payoff for any other policies of the agent-
2, which means

� 1(s)Q1(s)� 2(s) � � 1(s)Q1(s)� 20
(s):

Thus,

T1Q1(s) � T1Q10
(s)

� 
 (� 1(s)Q1(s)� 2(s) � � 1(s)Q10
(s)� 20

(s))

� 
 (� 1(s)Q1(s)� 20
(s) � � 1(s)Q10

(s)� 20
(s))

� 
 k� 1(s)kkQk 0
(s) � Qk 0

(s)kk� 20
(s)k:

� For agent-2. Similarly, We have

T2Q2(s) � T2Q20
(s)

� 
 (� 1(s)Qk (s)� 2(s) � � 10
(s)Q20

(s)� 2(s))

� 
 (� 10
(s)Q2(s)� 2(s) � � 10

(s)Q20
(s)� 2(s))

� 
 k� 10
(s)kkQk 0

(s) � Qk 0
(s)kk� 2(s)k:

We see thatT k is a contraction mapping.
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